Primitive Architecture and Climate

Despite meager resources, primitive people have designed dwellings that successfully meet the severest climate problems. These simple shelters often outperform the structures of present-day architects

by James Marston Fitch and Daniel P. Branch

In the building of his shelter primitive man faces one supreme and absolute limitation: the impact of the environment in which he finds himself must be met by the building materials which that environment affords. The environment is scarcely ever genial, and the building materials are often appallingly meager in quantity or restricted in kind. The Eskimo has only snow and ice; the Sudanese, mud and reeds; the Siberian herdsman, animal hides and felted hair; the Melanesian, palm leaves and bamboo. Yet primitive architecture reveals a very high level of performance, even when judged in the light of modern technology. It reflects a precise and detailed knowledge of local climate conditions on the one hand, and on the other a remarkable understanding of the performance characteristics of the building materials locally available.

Of course primitive architecture, like primitive medicine or primitive agriculture, often has a magico-religious rationale that is of interest only to anthropologists. But its practice—that is, how things are done, as distinct from the reasons offered for doing them—is apt to be surprisingly sensible. (This illogical situation is characteristic of pre-scientific technologies: the Roman architect Vitruvius, writing during the reign of Augustus, gives excellent formulas for concrete and stucco, but his explanation of their “chemistry” makes no sense at all.) The primitive architect works in an economy of scarcity—his resources in materials and energy are severely restricted. Yet he has little margin for error in coping with natural forces: gravity, heat, cold, wind, snow, rain and flood. Both his theory and his practice are strictly determined by these conditions.

An understanding of this primitive experience is of more than academic interest today because, with the rapid industrialization and urbanization of the Western world, there is a growing tendency to minimize or ignore the importance and complexity of the natural environment. Not only is the modern architect quite removed from any direct experience with climatic and geographic cause-and-effect; he is also quite persuaded that they “don’t matter any more.” Yet the poor performance of most modern buildings is impressive evidence to the contrary. Many recent buildings widely admired for their appearance actually function quite poorly. Many glass-walled New York skyscrapers have leaked badly during rainstorms, and have had to be resealed at large cost. The fetish of glass walls has created further problems. The excessive light, heat and glare from poorly oriented glass places insuperable loads on the shading and cooling devices of the building—a problem that is often compounded in the winter when the air-conditioning machinery is turned off [see “The Curtain Wall,” by James Marston Fitch; Scientific American, March, 1955].

Thus Western man, for all his impressive knowledge and technological apparatus, often builds comparably less well than did his primitive predecessor. A central reason for his failure lies in consistent underestimation of the environmental forces that play upon his buildings and cities, and consistent overestimation of his own technological capacities. Still, the worst he faces is a dissatisfied client. When the primitive architect errs, he faces a harsh and unforgiving Nature.

A few definitions are perhaps in order. As used here, the term “primitive” describes the buildings of preliterate societies, whether historical or current, whose general knowledge comes by word of mouth, whose training is by apprenticeship, whose industry is handicraft and whose tools are pre-Iron Age. Although the folk architectures of modern civilization often display the same kind of pragmatic sagacity as the primitive, they are of a qualitatively different order. The iron tools and the measurement systems of civilization immediately introduce factors such as modular building material (e.g., brick, tile, dimensioned lumber) and repetitive structural systems (e.g., Roman arcade, vaulted Gothic bay) which are antithetical to the plasticity of primitive structure. Literacy, on the other hand, introduces the disconcerting concept of a spectrum of building styles—an inconceivable situation to the primitive architect, to whom it has never occurred that there is more than one way to build. It is obvious that even primitive structures must have changed and evolved gradually over millennia, but at any given time the primitive architect was spared this unrecorded and forgotten history of styles. Indeed, knowledge of prehistoric architecture, as expressed in ordinary humble dwellings, is so scanty that this article will deal almost entirely with examples of primitive dwellings still being built in various parts of the world.

As used here, the term “performance” refers to the actual physical behavior of the building in response to environmental stresses, whether they be mechanical (snow load, wind pressure, earthquake) or purely physical (heat, cold, light). Civilization demands other sorts of performance from its architecture, but those faced by the primitive architect are basic and must be satisfied before more sophisticated performance is possible.

For the purposes of this discussion we are not concerned with plan, that is, the shape, size, scale or compartmentation given to architecture by problems of social exigency or cultural convention. For
TIDY THATCHED HUTS are built by the natives of Kordofan, located in the Republic of the Sudan. This village lies 11 degrees north of the Equator in open savanna country. The climate requires a massive structure to absorb the intense solar heat. The huts are of adobe built on a solid rock foundation, which protects them from the water that pours down the hillsides when it rains.
TIDY THATCHED HUTS are built by the natives of Kordofan, located in the Republic of the Sudan. This village lies 11 degrees north of the Equator in open savanna country. The climate requires a massive structure to absorb the intense solar heat. The huts are of adobe built on a solid rock foundation, which protects them from the water that pours down the hillsides when it rains.
example, the exigency of organized warfare would add a moat and a wall to one plan, and the convention of polygamy would introduce a harem into another. Neither will have any significance except in relation to the culture that gave it birth. The significance of architectural structure, on the other hand, is absolute: a roof either supports a load of snow or it collapses; a wall either stands up to the wind or it falls. Even the simplest hut will have a plan, just as the most primitive society will have its taboos and conventions. But the simpler the plan requirements of a building, the clearer will be its aspect of environmental response.

When we contemplate the world's enormous range of temperature and precipitation, whose summation largely describes climate [see illustrations at right and at top of pages 138 and 139], we must be impressed by man's ingenuity. Of these two chief components of climate, it is heat and cold that present the primitive architect with his most difficult problem. In culture after culture the solutions he has found show a surprising delicacy and precision. Since thermal comfort is a function of four separate environmental factors (ambient and radiant temperatures, air movement, humidity), and since all four are in constant flux, any precise architectural manipulation of them demands real analytic ability, even if intuitive, on the part of the designer. In the North American Arctic and in the deserts of America, Africa and the Middle East he has produced two classic mechanisms of thermal control: the snow igloo and the mud-wall hut.

On a purely theoretical basis it would be hard to conceive of a better shelter against the arctic winter than the igloo. Its excellent performance is a function of both form and material. The hemispherical dome offers the maximum resistance and the minimum obstruction to winter gales, and at the same time exposes the least surface to their chilling effect. The dome has the further merits of enclosing the largest volume with the smallest structure; at the same time it yields that volume most effectively heated by the point source of radiant heat afforded by an oil lamp.

The intense and steady cold of the Arctic dictates a wall material of the lowest possible heat capacity; dry snow meets this criterion admirably, though at first glance it seems the least likely structural material imaginable. The Eskimo has evolved a superb method of building quite a strong shell of it, composed of snow blocks (each some 18 inches thick, 36 inches long and six inches high) laid in one continuous, sloping spiral. The insulating value of this shell is further improved by a glaze of ice that the heat of an oil lamp and the bodies of occupants automatically add to the inner surface. This ice film seals the tiny pores in the shell and, like the aluminum foil on the inner face of modern wall insulation, acts as a radiant-heat reflector. When, finally, the Eskimo drapes the interior of his snow shell with skins and furs, thereby preventing the chilling of his body by either radiant or conductive heat loss to the cold floor and walls, he has completed an almost per-fect insulating environment of next-to-nothing to the nostril, a small fraction of the weight of the matter, and the personal comfort impossible in the interior of the igloo.

CLIMATE

ARCTIC AND SUBARCTIC

INTESE, CONTINUOUS COLD
LITTLE SOLAR LIGHT OR HEAT
HIGH WINDS

SUMMER
MODERATE TEMPERATURES
INTENSE SOLAR RADIATION

CONTINENTAL STEPPE

INTESE, CONTINUOUS COLD
NEGULIGIBLE SOLAR HEAT
HIGH WINDS

SUMMER
LONG, WARM DAYS
COLD NIGHTS

DESERT

LITTLE OR NO SEASONAL VARIATION
HOT DAYS-COLD NIGHTS
INTENSE SOLAR LIGHT AND HEAT
VERY LOW HUMIDITY
LITTLE RAIN

TROPICAL RAIN FOREST

NO SEASONAL VARIATION
HOT DAYS
WARM NIGHTS
INTENSE SOLAR RADIATION
HIGH HUMIDITIES
HEAVY RAINFALL

IMPACT OF CLIMATE and available building materials on the design of primitive dwellings is summarized in this chart. It describes the four climatic regions where the greatest variety of primitive architecture is still to be found. In the first three climate zones, control of temperature, moisture and air movement is the principal concern.
of temperature is the crucial architectural problem. In the fourth heavy seasonal rains add to the difficulty. To solve his problems the primitive architect shrewdly exploits the limited materials available to him and works them into a structural form that admirably meets both the demands of the climate and the requirements of his particular culture: nomadic, hunting or agricultural.
CLIMATE MAP identifies seven principal regions all once occupied by primitive man. He has now been largely pushed out of the two most genial climate zones: the temperate and subtropical. Thus the primitive architect, where he still exists, has to cope with airlocks to subsidiary units for food storage, dogs and equipment. In any case, the igloo melts no sooner than the Eskimo is ready to discard it. It didn't take him long to build, and it gives him first-class protection while it lasts.

If we turn to quite another type of thermal regime, that of the great deserts of the lower latitudes, we find an architectural response equally appropriate to radically different conditions. Here the characteristic problem is extremely high daytime temperatures coupled with uncomfortably low temperatures at night. Sometimes, as in the U.S. Southwest, wide seasonal variations are superimposed upon these diurnal ones. Against such fluctuations the desirable insulation material would be one with a high heat-capacity. Such a material would absorb solar radiation during the daylight hours and slowly radiate it during the night. Thus the diurnal temperature curve inside the building would be flattened out into a much more comfortable profile: cooler in daytime, warmer at night [see illustration at bottom of opposite page]. Clay and stone are high heat-capacity materials; they are plentiful in the desert, and it is precisely out of them that primitive folk around the world make their buildings. Adobe brick and terra pise (molded earth) as well as mud and rubble masonry, appear in the Southwest; massive walls of sun-baked brick in Mesopotamia; clay mortar on reed or twig mesh in Africa from the Nile Delta to the Gold Coast. And the native architect evolves sophisticated variations for subtle changes in environment. In the cold wind, there are igloos and huts. In the heat of summer, where the sun beats down on the bivouac, benches are set up over the shaded side.

![Graph showing igloo temperatures](image)

IGLOO TEMPERATURES may run as much as 65 degrees Fahrenheit higher than external air temperatures. The heat source: a few oil lamps and a few Eskimo bodies. Outside temperature is typical winter range.
Limited to what for us would be a pitifully meager choice of materials, the primitive architect often employs them so skillfully as to make them seem ideal. Africa, for example, has developed dozens of variations of the structural use of vegetable fibers (grasses, reeds, twigs, saplings, palm trunks) both independently and as reinforcement for mud masonry. In Egypt, where it seldom rains, flat roofs are practicable; hence mud walls carry palm-trunk roof beams which in turn support a mud slab reinforced with palm fronds. Other regions, although arid, will have seasonal rains; here sloping forms and water-shedding surfaces are necessary. The beautiful beehive hut appears. Built like a conical basket on an elegant frame of bent saplings and withes, the beehive hut is sometimes sheathed with water-repellent thatch; sometimes mud plaster is worked into the wattle; sometimes the two are combined, as in the huts of the Bauchi Plateau of Nigeria.

The Nigerians construct a double-shelled dome for the two seasons. The inner one is of mud with built-in projecting wooden pegs to receive the outer shell of thatch. An air space separates...
the two. This construction accomplishes three things: the thatch sheds water and protects the clay dome during the rainy season; the air space acts as additional insulation during hot days and the mud dome conserves heat for the cool nights. The principle of reinforcing is well understood. The Ashantis of West Africa build truly monolithic structures of mud beaten into a reinforcing web of woven twigs. Moreover, we find that the mass of the wall is adjusted to meet varying temperature regimes. In the colder desert areas the wall will be very thick to increase their heat-holding capacity. Often, in fact, to benefit from the more stable earth temperatures, the houses will be built into a southern cliff face (U. S. Southwest, southern Tunisia, Shensi province in China). In warmer desert regions, where diurnal or seasonal variations are smaller, the wall mass can be greatly reduced by the reinforcing techniques described above. In these regions, too, intense radiation and glare are the source of discomfort. Here again we find the primitive architect alertly responsive. Door and window openings are reduced in size to hold down interior light levels, and walls are painted or stuccoed white to reflect a maximum amount of radiant heat.

The inner tropical zones of the earth confront the primitive architect with quite another set of comfort problems. Here heavy rainfall and high humidity are combined with moderate air temperatures and intense solar radiation. There is no seasonal, and very little diurnal, variation in temperature. Thus shade and maximum ventilation are the critical components of comfort. To reduce the heat-holding capacity of the walls and to maximize the air flow across the interior, the primitive architect reduces the wall to a minimum, or gives it up altogether. The roof becomes the dominant structural element: a huge parasol, steeply sloping to shed torrential rains, opaque to solar radiation and of minimum mass to avoid heat build-up and subsequent reradiation into the living space. This parasol roof usually extends far beyond the living space to protect the inhabitants against slanting sun and blowing rain. And the floors of these airy pavilions are sometimes raised on stilts for better exposure to prevailing breezes as well as for protection from snakes, rats and crawling insects. This is the basic architectural formula of the Seminoles of Florida, of the tribes of the Caribbean littoral and of the Melanesians. The materials employed are predominantly vegetable fibers of all sorts: saplings and bamboo, vines for lashing them together, shredded fronds and grasses. In the absence of iron tools the cutting and fitting of carpentry is totally missing; instead the techniques of assembly are the tying and weaving of basketry or textiles. Here again, from the point of view of environmental response, the primitive designer shows an acute understanding of the local problem and a precise understanding of the properties of local materials.

In the outer tropical zones other refinements appear. Here the climate is characterized by two distinct seasons: one very hot, the other very cool. Air conditioning is achieved in some degree; roofs are made of leaves, thatch, and wood and certain types of leaves are used in roofing and wall covering. The Domed houses are often built only to a height of 5 or 6 feet above ground level to allow direct ventilation. In many parts of the world the ground is covered with leaves, dried grasses, and other organic material, which becomes decomposed and provides a moderating influence upon the soil temperatures. Organic covering like this is a necessity in those tropical parts of the earth where the surface of the earth is subjected to periodic flooding by tidal action. In such regions the ground is covered with leaves and grasses at all times of the year. In this way the tropical regions have a temperature régime that is much more uniform than that of any other part of the earth.
one very wet and one very dry. (Both are hot.) Vegetable fibers are still employed, but in varying techniques, to achieve a wide range of permeability to heat and air. Thus certain tribes of Natal in South Africa build a hut whose light wooden frame is sheathed in woven fiber mats. The weave of these mats contracts in dry weather, permitting the movement of air through its interstices; but the fibers expand in wet weather, converting them into nearly waterproof membranes. In the huts of the Khosian tribe of South Africa these mats are detachable and can be moved from wall to wall according to wind direction.

Naturally many other forces beyond the purely climatic are at work in shaping primitive architecture. The culture and means of subsistence will determine whether the shelter be permanent, mobile, seasonal or purely temporary. If the culture is a hunting one, like that of the Indians who once inhabited the

bush is made of sticks covered with slabs of turf. The yurt, or Kazak tent (c), is among the most ingenious and weatherproof of the many types of demountable dwelling conceived by nomadic tribes. Its lightweight willow walls fold up like a child's safety gate. The covering is felt, sometimes two-layered with an air space between.

The familiar Indian tepee (d) has a hide covering that can be closed weathertight or opened variably. Floor plan of tepee shows the three poles (solid circles) that are erected first. Bedouin tent (e), usually of woven goat hair, is primarily a sunshade, but, when required, must serve as a protective shield against sandstorms.
Great Plains of North America; or a herding one, like that of the peoples of the Asiatic steppes, the architecture will tend to be demountable and mobile. But it will not be expendable, because suitable building materials are not readily available on the open steppe or prairie. (The sod dugout would make sense only in a permanent settlement.) Hence the structurally brilliant invention of the tent—light in weight, composed of small members and easily erected, dismantled and packed. At the same time, if we judge it by the modern structural criterion of “the most work from the least material,” the tent (like all tension struc-
tures) ranks as a very advanced form of construction. The basic type has been modified to meet a wide variety of climates: The American Indians covered the skeleton with skins; the Australian aborigines, with bark; the nomads of northern Asia, with felted hair; the nomads of the Middle East, with woven cloth. But it is the Montagnard (h) in the highlands of southeast Asia who developed the tent to its ultimate form. The dome of this construction is tightly laced over the frame, making the mobile wood-frame house seem staked in the earth.

TROPICAL DWELLINGS, including one for temperate climate, reflect a great disparity in sophistication, but all are effective shelters. The adobe house (f) of Indians of the Southwest is built of baked mud bricks with a smooth mud-plaster exterior. The massive roof is ideally designed to absorb the midday heat. The Navajo hogan (g) is usually much cruder, consisting of mud daubed on a rough wooden frame. (The one illustrated is nearer than most.) The simple hut (h) of the Bantu Pygmies (northeastern Congo) is a woven frame of twigs covered with large leaves. Since it is protected by the deep shade of the forest it does not need massive

heat-absorbing walls.
cloth. Perhaps the most advanced form, in the bitter cold of Siberia, was that developed by the Mongol herdsmen. Here the demand for effective thermal insulation is met by two layers of felt stretched over the inside and outside of a collapsible wooden trellis. The elliptical dome, staked to the earth, furnishes excellent protection against the high winds and bitter cold of Siberia.

One could extend this catalogue of human ingenuity indefinitely. But the examples cited are surely adequate to establish the basic point: that primitive man, for all his scanty resources, often builds more wisely than we do, and that in his architecture he establishes principles of design that we ignore at great cost. It would be a mistake to romanticize his accomplishments. With respect to civilized standards of scale, amenity, safety and permanence, the actual forms of his architecture are

heat-absorbing walls and roof. The Chippewa hut (i) closely resembles the Pygmy hut except that it is covered with birch bark. It affords a snug shelter against the weather characteristic of the U.S. Great Lakes region. The Seminole Indian house (j) anticipates the open, airy structures so admired by today's civilized Florida dwellers. In the Lake Chad region of Africa the local tribes build a cylindrical adobe hut (k) with a conical thatched roof. This roof, like that of the stilt house (l) of the Admiralty Islands off New Guinea, is most effective in shedding rain. In World War II the Pacific troops found such roofs much drier than a tent.
totally unsuitable. Neither is there any profit in the literal imitation of his handicraft techniques or in the artificial restriction of building materials to those locally available. Primitive architecture merits our study for its principles, not its forms; but these have deep relevance for our populous and ill-housed world. If we are to provide adequate housing for billions of people, it cannot be on the extravagant model of our Western urbs, suburbs and exurbs. The cost in building materials and in fuels (for both heating and cooling) would be altogether prohibitive for the foreseeable future.

Western science may be able to measure with great accuracy the environmental forces with which architecture deals. But Western technology—especially modern American technology—too often responds with the mass production of a handful of quite clumsy stereotypes. This is obvious, for example, in the thermal-control features of our architecture. In the house or the skyscraper, generally speaking, we employ one type of wall and one type of roof. The thermal characteristics of these membranes will be roughly suitable to a thermal regime such as that of Detroit. Yet we duplicate them indiscriminately across the country, in climates that mimic those of Scotland, the Sahara, the Russian steppes and the subtropics of Central America. The basic inefficiency of this process is masked by the relative cheapness of fuels and the relative efficiency of the equipment used to heat, cool and ventilate our buildings. But the social waste of energy and material remains.

Contemporary U.S. architecture would be greatly enriched, esthetically as well as operationally, by a sober analysis of its primitive traditions. Nor would it be stretching things to include in these traditions the simple but excellent architecture of the early white settlers who, in many respects, were culturally closer to primitive man than to 20th-century man. The preindustrial architects of Colonial and early 19th-century America produced designs of wonderful fitness: the snug, well-oriented houses of New England, the cool and breezy plantation houses of the deep south, the thick-walled, patio-centered haciendas of the Spanish Southwest. All these designs should be studied for the usefulness of their concepts, and not merely be copied for antiquarian reasons.

PUEBLO in Taos, N.M., is one of two multistoried structures that were in existence at the time of the Spanish conquest in 1540.

INDO-CHINESE VILLAGE illustrates how primitive architects turn traditionally to adobe when climate calls for heat absorption.

ZULU KRAAL in Union of South Africa answers climate problem with thatched huts built on woven framework of light branches.

SOUTH SEA VILLAGE on Alor Island near Borneo shows light parasol construction so admirable for regions of heavy rainfall.
totally unsuitable. Neither is there any profit in the literal imitation of his handi-
craft techniques or in the artificial re-
striction of building materials to those
readily available. Primitive architecture
merits our study for its principles, not its
forms, but these have deep relevance
for our populous and ill-housed world.
If we are to provide adequate housing
for billions of people, it cannot be on
the extravagant model of our Western
towns, suburbs and enclaves. The cost in building
materials and in fuels (for both heating
and cooking) would be altogether prohibitive
for the foreseeable future.

Western science may be able to measure
with great accuracy the environmental forces with which architecture
deals. But Western technology—especially modern American technology—too of-
ten responds with the mass production of
a handful of quite clumsy stereotypes.
This is obvious, for example, in the ther-
mal-control features of our architecture.
In the house or the skyscraper, generally
speaking, we employ one type of wall
and one type of roof. The thermal char-
nacteristics of these membranes will be
roughly suited to a thermal regime
such as that of Detroit. Yet we duplicate
them indiscriminately across the coun-
try, in climates that mimic those of Scot-
land, the Sahara, the Russian steppes
and the subtropics of Central America.
The basic inefficiency of this process is
marked by the relative cheapness of
fuels and the relative efficiency of the
equipment used to heat, cool and ven-
tilate our buildings. But the social waste
of energy and material remains.

Contemporary U. S. architecture
would be greatly enriched, aesthetically
as well as operationally, by a sober anal-
ysis of its primitive traditions. Nor were
it be stretching things to include in these
traditions the simple but excellent archi-
tecture of the early white settlers who, in
many respects, were culturally closer to
primitive man than to 20th-century man.

The preindustrial architects of the Old
and early 19th-century America pro-
duced designs of wonderful fitness: the
snug, well-oriented houses of New Eng-
land, the coal and breezy plantation
houses of the deep south, the thick-
walled, patio-centered haciendas of the
Spanish Southwest. All these designs
should be studied for the usefulness of
their concepts, and not merely be copied
for antiquarian reasons.